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Abstract

Standard statistical methods are used to analyze data that is assumed to be
collected using a simple random sampling scheme. These methods, however, tend to
underestimate variance when data is collected with a cluster design, which is often found
in educational survey research. The purpose of this paper is to (a) demonstrate how a
cluster design affects standard error statistic and the subsequent analyses, and (b)
present practical techniques to correctly analyze data from"jcluster designs. A huristic
example is given to illustrate how to compute the variance estimate for a cluster dasign
and the corresponding design effect. Simulation data is then used to examine variance
estimation results from one- and two-stage cluster designs, respectively. Both formula
approach and a jackknife resampling approach are used in obtaining variance estimates.
It is shown that, for 150 observations sampled from a population of 1,000, using a two-
stage cluster design, the actual variance can be underestimated by a factor of 3 if the
standard statistical method is used. The underestimated variance or standard error
statistic will lead to unwarranted statistical significance in hypothesis testing, or a narrow
confidence interval in paramster estimation. Consequently, misleading conclusions can

be made based on thess inappropriate analysis findings.

Wi b

Jlnll\




The Effect of Cluster Sampling Design in Survey Research

on the Standard Error Statistic

Cluster sampling design is frequently implemanted in educational survéy researh.
Most of today’s national public databases In education, such as the National Assessment
of Educational Progress (NAEP), contain information collected with some types of ciuster
sampling designs. Cluster sampling designs are also employed by invididual researchers
who conduct survey studies at smaller scales. For example, in an evaluation of the
sample designs reported tn an educational research journal, it was found that about 15%
of the probability sampling designs involved some cluster selections {Wang, 1996).
Cluster sampling is often used mainly to reduce the cost of conducting a survey. “Cluster
sampling is an effective design for obtaining a specified amount of information at
minimum costunderthe following conditions: {1} A good frame listing population elements
either is not available or is very costly to obtain, while a frame listing clusters is easily
obtained. (2) The cost of obtaining observations increases as the distance separating the
elements increases” (Scheaffer, Mendenhall, & Ott, 1990, p. 244). Such conditions arg
quite typical of educational survey research, paricularly the research on organizational
charactersitics of natural clusters, sucy as classes, schools, etc..

Analysis of the survey data collected with a cluster sampling desig.1 requires
special treatment in variance estimation. In most statistical analyses, one impdrtant
assumption for applying various statistical methods is that cbservations are independently
and identically distributed in the population. The formulas for statistical computations are

usually provided for analyzing data collected with a simple random sampling design. This
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assumption, however, creates problems for analyzing data from a cluster design in surv

research, because the assumption is rarely met in practical survey situation (Cochre
1977; Deming, 1960; Jaege - 1988; Kish, 1965, “ntt, 1991; Lee, Forthofer, & Lorim
1989). People tend to have more in common within a natural group or c¢luster, such
a class, a school, a communlity, etc., than among the clusters, this is paiticularly true
opinions or attitudes. In survey analysis, this within-cluster similanty is called homogene

and measured by rhg, the coefficient of intraclass correfation (Kish, 1965}).

Generally, the homogeneity tends to increase the variance of a cluster sample
a given sample size when compared with a simple random sample. The effect of suL

increased variance is measured by a quantity design effect, or deff. The oeff is the re

of the actual variance estimaie of a cluster cample to the variance estimaled fron
simple random sample on the same data. Typically, the deif is greater than un
indicating that a cluster design has less efficiency than a simpie random design. in ot
words, given the same sample size, a cluster sample tends to yield a larger variance tr
does a simple random sample. This is the price we pay for using a cluster design
economy and easiness in conducting a survey study.

Because of such possible differences in the estimated variaaces, itisimportant
correct variance estimation method be used in analysis of cluster sample data. This p
is not well taken by many educational researchers doing survey research. Consequer
variance estimation in the analysis of cluster sample daila is usually done using
formulas appropriate for simple random sample data only {Wang, 1998). This prac

entails possible underestimation of the variances, or the standard error statistics. ’
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consequences can be unwatranted findings some nonexistant statistical significance in
hypothesis testing. For example, Kish (1265) has demonstrated that, given the same
data, a cluster sample variance can be underestimated by a ratio of 4 if the formula for
a simple random design is used. Very different results can be obtained from the two
methods. Such a problem has hardly been discussed in educational research literature
and needs to be addressed with no further delay. The purpose of this paper is to; (a)
demonstrate how a cluster design affects standard error statistic and the subsequent
analyses, and (b) present practical techniques to analyze data from cluster designs
correctly.
Methods and Data

The investigation of the effects of clustaer sampling designs on standard error
statistics is presented and discussed in two ways: an illustrative sxample with a small
heuristic data set and a simulation study.

The heuristic data analysis. A small set of data from a cluster design is analyzed

to demonstrate the differences in the results of standard error or variance calculation.
This is done by using a standard statistics formula for simple random sample datla and
a formula appropriate for a cluster design.

The simulation study. The simulation study is designed to model the practice of

taking a cluster sample and doing analyses in educational survey research. A population
data set is generated such that the population contains 1,000 observations. Foi ease of
discussion, equal cluster size is adopted for both the populalion and the sample in the

study. Specifically, there are 20 clusters (e.g., schools} with 50 elements (e.g., teachers)
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in each cluster. The data is assumed to be measurement taken on a 5-point Likert scale
(say, teachers’ job satisfaction rating). The clusters are definad by varying cluster means
and standard deviations in data generation. This is bagsed on the reascning that thae
elements {teachers) in a cluster (school) tend to have similar characteristics (job
satisfaction rating). yielding different means and standard deviations across clusters.,
Both a one-stage probability cluster designh and a two-stage probability cluster
design are implemented. Ten clusters are randomly selected from the 20 clusters in the
population data. For the cne-stage design, all the data in each of the 10 clusters is usad,
i.e., k=10, n=500. For the two-stage design, 15 cases are randomly selecied from each
of the 10 cluster. Therefore, the final sample size isn = 150 and k = 10. The analysis and
the calculation of standard errors are carried out with two approaches: formula approach
and resampling approach. The formulas for variance calculation in cluste. designs are
readily found in sampling texts (Kish, 1985; Sheaffer et al., 1990). For example, in this
study, the variance estimation formulas are the following, respectively, for the one-stage

cluster sample (Kish, 1965, p. 151, (5.2.3)),

2 a
=y (1 -8y Fa where z2_ 1 5 _Ty2
var(y) =(1 E)_—a Sa_a-l% (yv,-¥)

and for the two-stage cluster sample (Kish, 1965, p. 167, (5.8.5)),
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where

and

The resampling approach is used to obfain the empirical standard errars or
variances instead of the theoreticat ones based on the formulas given above. Resampling
is a potentially very useful approach in practice where appropriate formulas are not
available, such as in some comlex sample designs. A variety of resampling methods are
used in statistical analysis. Bootstrap and jackknife methods appear to be very popoular.
While the bootstrap method is believed to work belter than the jackknife method, the latter
is thought to be more suitable in cases of complex sampling (Lee et al, 1989; Mooney &
Duval, 1993). In this study, we use a jackknife technigue to obtain an empirical variance
estimate (Efron, 1981; Efron & Gong, 1983; Lee et al, 1988). In a typical jackknife
application on a sample of n observations, n rounds of calculations are done such that
ona obsarvation is deleted in turn in each round, and relavant statistics (say, a mean} are
obtaired. Tne final variance of the statistic is given by the following formula (Lee et al,

1989, p. 33, (4.6)):
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In a complex survey analysis, however, the jackknife operation is carried out on what is
called primary sampling unit (PSU), which in this study is the cluster. The formula

becomes

k
Y Vi
?—: 1=1

k
var (y) jack=-£{]_<—1 Z (Fiy-M?
I=1 I
where k is the number of nonoverlapping subsets (clusteis) in the data, each subset
containing h observations (size of a sampied cluster) such that kh = n, the total
observations in the entire savaple. It is obvious that when h = 1, then k = n, that is, one
observation is deleted at a time. In this simulation study, the jackknife method is applied
to the two-stage cluster sample data, with one cluster deleted at a time. Specifically, a
SAS program using macro procedures was written such that one cluster was deleted in
each of the k = 10 executions. In each execution, the mean of the retained 9 clusters
were calculated using PROC MEANS, a SAS statistical procedure. At the end of the 10
executions, 10 means were obtained and the jackknife variance of the means was
estimated with the formula given above.
Results and Discussions

The heuristic example

Forillustration of the difference in the variance estimalion results between the two
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methods for a simple random sample and a one-stage cluster sample respectively, the
heuristic example in Tahkle 1 is made to contain only 9 obsorvations in 3 clusters selected
from M clusters in a population, each population cluster size (B) is 3. That this is a one-
stage cluster sampling design means that the 3 clusters are randomly sampled from M
{assumed to be very large in the population) clusiers and all the observations in each of
the 3 clusters are included in the final sample, In other words, no sampling occurs within
each cluster. Therefore, all the sampling variance comes from the between-cluster
variance only. The calculation of the estimated variance for the cluster sample is shown
to be .3333 in Table 1.

On the other hand, if the 2 observations are treated as from a simple random
sample, the variance estimate from this simple random sample of 9 cases will be .1681.
This calculation ignores the cluster structure in the data and does not take the difference

between clusters into account. The corresponding design effect is then:

. var{¥) cruseer _ 3333
var(y) gimpro 1681

=1.98

This indicatas that the actual variance estimate of the cluster sample is close to twice the
size that of the simple random sample, even though the data is made to difier only a little
across the 3 clusters in this example. The standard errors are the square roots of the two
variance estimates, .58 and .41, respectively. In a hypothesis testing situation, the
standard error from the simple random sample formula is more likely than that from the
cluster sample formular to lead to a statistically significant finding. By the same token, in

canstructing a confidence interval around 1he estimated parameter of interest such as a
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population mean, the interval based on the standard error of .41 is narrower than the one

from the standard error of .58.

lnsert Tabel 1 about here

The one-stage cluster design

Using the aforementioned variance estimation formula for a one-stage cluster
design, the estimated variance is .0312 for the simulation data from 500 cases in the 10
randomly selected clusters. On the other hand, when the formula for a simple random
sample is used to estimate the variance, the estimate is .0016. The design effect then is:
deff = .0312/.0016 = 19.5. Therefore, if one uses the standard statistical procedure to
compute the variance estimate in this case, he or she will drastically underestimate the
actual variance and will be very likely to reach some unsubstantiated conclusians,

The difference between the two variance estimates may be explained from two
perspectives. First, from the conceptual perspective, it has already been mentioned that
the difference results from whether the cluster design characteristics is kept in mind in
both therdesign and the analysis processes. A lypical problem in survey rgsearch is that
researchers are often aware of the design advantage of cluster designs, but forget,
ignolre. or simply fail to see the special requirements in analysis. Consequently, survey
data is analyzed in the same way, using the formulas for simple random samples, no
matter what sampling designs are actually implemented. Second, from the analytic
perspective, the difference occurs as a cunsequence of inappropriate decision on unit of

analysis. In a cluster design, the unit of analysis is the cluster, not the individual
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observations within the clusters. In a simple random design, no cluster exists and the unit
ot analysis is the individual observations. In this example, using n = 500 instead of k =
10 in calculation leads to the underestimatad variance of .0016 instead of .0312.

The two-stage cluster design: A formula approach

In the two-stage cluster sampie design, the simulation data consists of 10 clusters
with 15 observations sach. As was mentioned earlier, in a two-stage cluster sampling,
sampling errors occur at both stages and have to be taken into consideration. Using the
data for the simulated iwo-stage cluster design, the variance calculation formula for the

two-stage design reflects this consideration as the formula below is made up of two parts:

2
= _ .8, Za _hb
Val'(_}f) ={1 —}—1 -a-—*(l —B)

e

S

5l

The first pant gives the between-cluster variance at stage one in selection, and the second
part is for the within-cluster variance at stage two. The variance ostimated with this
formual is .034, The between- and within-cluster variances are .031 and .003,
respectively. When the sample of 150 observations is treated as a simple random sample,
however, the estimated variance is then .011. The design effect in this case is .034/.011,
or deft = 3.05. This tells that using the wrong formula (the one for the <imple random
sample) will underestimate the actual variance by a factor of 3.

It is evident in the formula above that the number of clusters in the population,
A. plays an important role in determining the final total variance. Given a fixed g, the

number of clusters to select at stage one, a large A gives a small value for the selection
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ratio, a/A, vielding a large between-cluster variance. The large A also minimizes th
influence of the within-cluster variance in the formula. This situation occurs when a sms
number of clusters are randomly selected from a very large number of clusters in th
population. An example would be selecting 100 schools from all the schools in the Unite
States, or selecting 10 classes from all the classes in a large metropolitan schaool distric

On the other hand, the within-cluster selection ratio b/B influences the magnituc
of the within-cluster variance in the formula. A large ratio means a small within-clust
variance contribution to the total variance. For example, in the results above, the withil
cluster variance totals .003 only, with the within-cluster selection ratio at .3 (15/50),
rather large value from this stage of selection. Intuitively, a large selection ratio meat
mare members of a cluster are included to yield a smaller sampling error in estimatio

The two-stage cluster design: A jackknife approach

As was described in the earlier section, the jackknife simulation was done on ti
k = 10 clusters. The 10 means from the 10 jackknife executions are: 3.22, 3.24, 3.2
3.35, 3.39, 3.40, 3.34, 3.42, 3.40, 3.47. Because the cluster selection ratio, a/A is .5 (
out of 20), the finite population correction (fpc) is also .5 (fpc = 1-a/A = 1-.5). This fpe
too large to ingore in calculation and has been included in the formula approac
Therefore, the ipc should also be used in the jackknife formula for consistency. TI

jackknife variance is then calculated as:

k
= . _ aa k—l — =2
var(y) jack={(i-) { K )IZ:::L(Y”-) y)
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The variance estimate is .031, the same as the between-cluster variance estimal
obtained earlier with the formula approach. It is obvious that the jackknife procedul
assesses the effect of individual clusters on the results from the sample. Since the withil
cluster pan is not included in the jackknife procedure, only between-cluster varianc
estimate is usad to raprasent the total variance estimate. This clearly underestimateas tt
actual variance to cert. a1 extent, depending on the size of the within-cluster variance.
this example, the difference is .003, or about one tenth of the total variance estimate.

in practice, this small underestimation may not have noticeable influence on tf
findings. Therefore, using the jackknife procedure for this type of empirical calculation
variance may enable us to arrive at a reasonable estimate, provided the within-clust
variance i1s small enough to be ingored without any harm. If, in survey practice, ti
number of clusters in the population is very large and the number of observations tak
from each selected cluster is not small, the effect of the within-cluster variance on tl
total variance is very likely to become inconsequential. Then the jackknife estimate shot
be a good approximation to the actual variance estimate.

Conclusions

In view of the characteristics of educational survey research and the problei
related to the analysis of complex survey data, the discussion in this paper may ha
offered some assistance in understanding the nature of the prob'em, ie., i
inappropriate estimation of variance as a result of ignoring the cluster sampling desi
The examples used in illustration, however, are very simple ones, involving only 1

variances of means. This is mainly because formulas are available to calculate !
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complex variance estimates if design features are known. For variance estimates of other
parameters such as regression coefficients or those in muiltivariate analysis, there is no
direct formula application for cluster variance alculation. Some gpirical methods must be
used to assess the effect of complex sampling on variance estimation. Not much has
been reported on research in this respect and there is clearly a need for such research.

As far as most educational researchers are concerned, it is necessary to realize
the problems in variance estimation raised in this paper. Essentially, when a cluster
sampling design is used in data collection, the analysis should be carried out using
correct variance estimation methods. This variance estimate is thein used in making
statistical inference, such as hypothesis testing or confidence interval construction. Failure
to use the correct method is likely to lead to the underestimation of the actual variance
due to the design effect. The correct methods include either the formula approach or the
jackknife approach, depending on how much tracking information is available about the

observations in the final sample,
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Table 1 B
A heuristic example )
Cluster (a = 3)
Case 1 2 3 Sum

1 1 2 3
2 2 3 4 :H

3 3 4 5

Cluster total (y,} 6 9 12 27
Cluster total squared 36 81 144 261
Calculation:
111 e ¢ )
var(y) "R ET (1=1Y§-Xa—)

where, B = 3, the population cluster size, y is the sum of y, {Kish, 1965, p.
1863, (56.2.3)). Therefore,

R 1y 729
={.= 1-—=) =.
var(y) (3)(32)(3_1}(26 573333

Note. Assuming only a small number of clusters are selscted from a large number of
clusters in tne population, the finite population correction {(pcg) is ignored in the
computation.




